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Time-Domain Method of Lines Applied to
Planar Guided Wave Structures

S.NAM, HAO LING, MEMBER, IEEE, AND TATSUO ITOH, FELLOW, IEEE

Abstract — A new time-domain method for the analysis of wave propaga-
tion and scattering in a planar transmission structure is developed in which
the concept of the method of lines is used. The analytical process incorpo-
rated along one of the three dimensions has been executed for each line
independently (one-dimensional process) or for one set of lines (two-
dimensional process) depending on whether or not the structure contains
metallic strips at the dielectric interface boundary. A simple numerical
example is presented as a demonstration of the above two processes of the
method, and its validity is shown by comparison with other data.

I. INTRODUCTION

HE TIME-DOMAIN analysis of microwave planar
transmission structures provides an alternative to the
frequency-domain approach and is also useful for studying
the behavior of pulsed signals in structures such as high-
speed digital circuits. A typical time-domain analysis re-
quires discretization of a three-dimensional space into a

three-dimensional mesh. Usually, a large computer storage

and a long computation time are required. An additional
problem of these methods is the difficulty in handling
open boundaries. ‘

The method proposed in this paper originates from the
fact that most of the discontinuities appearing in the
planar transmission structures are located on the substrate
surface and the space below and above this surface is
uniform and homogencous. We wish to solve the problem
by discretizing only in a two-dimensional surface on the
substrate where the discontinuity is located. This is possi-
ble if the wave-scattering information in the direction
perpendicular to the substrate surface is available analyti-
cally. The proposed method actually incorporates this pro-
cess. The method is somewhat similar to a frequency-
domain analysis called the method of lines [1].

The method entails the discretization of the structure by
a number of lines perpendicular to the substrate surface as
shown in Fig. 1. At the specified time, a spatial diagonal-
ization transform of the field distribution at each intersec-
tion of these lines with the substrate surface is calculated
* by Maxwell’s equations discretized only in the x and 2
directions, which are parallel to the substrate surface. The
field information in the y direction is obtained analytically
at each point and time. This information can be found
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Fig. 1. Typical planar transmission line structure with - discontinuity

and its discretization example for the analysis.

from the inverse Fourier transform of the solution of the
frequency-domain Helmbholtz equation in the y direction.

One may wonder what is happening to the wave-scatter-
ing phenomena- that are occurring everywhere in the wave-
guide, not only on each line. This question is natural,
because in other time-domain methods the electromagnetic
fields at one mesh point interact with those at all six
neighboring mesh points in the x, y, and z directions. In
the proposed method, the fields at any point on one.
discretization line do not appear to interact with those on
a ‘similar point on. another line. It should be emphasized
that this is not the case. As we will see shortly, the spatial
diagonalization transformation introduced in this method
has the property that the real field as a function of
(discretized) x and z is transformed to another discretized
quantity (transformed field) which contains the real field
quantities at all x and z values. Therefore, the analytical
information in the y direction in the transformed domain
already contains the interaction between lines. Since ana-
lytical expressions are used for the field variation in the y
direction, this method can easily handle the case where the
top wall is removed, whereby the structure is open in the y
direction.

II. MEerHOD

Let us consider a simple two-dimensional structure as a
test case. The formulation for such a structure is simple,
yet it contains all essential features of the proposed method.
As shown in Fig. 2, the problem is a partially filled
rectangular- waveguide with/without metallization at the
dielectric, interface excited by an electric field, -£,, infinite
in length and uniform in the z (axial) direction. The
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Fig. 2. The cross-sectional structure of a finned rectangular waveguide.

problem is now a two-dimensional one. This problem
corresponds to finding the time-domain behavior of the
pulsed input in the given structure and the cutoff frequen-
cies of various TM modes in the frequency domain [2].

Because of the excitation, only E,, H , and H 5 exist and
d/0z = 0. The time-domain equations, discretized in the x
direction only, are given by

IV AV IS VAV (1a)

~pd[H,]/3t=[D:][E,]/Ax (1b)

e(y)a[E.) /0=~ [D]'[H,]/Ax = 9[H,]/3y (1c)
[DEIE]/(Ax)*+ 9°[E.] /0%

—pe(y) 9*[E.]/9% =0 (1d)

where [D?],[Df.] are difference operators in which the

sidewall boundary condition is incorporated [1] and given

by

—
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The variables [E,}, [H,], and [H,] are the column vectors
where the ith element represents the fields-along ith line
and are functions of y and ¢.

Since [ D¢ ]1s a real symmetric matrix, there exists a real
orthogonal matrix [77] that transforms [ Df, ] into a diago-
nal matrix [d,] and is given by [1]

(7] =V2/(N +1) sin[ika/(N +1)]
fori, k=1to N (3)
[d5.] i1, =2sin[im/(2N +2)]
fori=1to N (4)

where N is the total number of discretized lines for E..
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We can now transform [F,], etc., into a transform
[E]]=[TVE,] etc., where the superscript ¢ stands for
transpose. The transform of (1d) is

(1/8x)[de,)[E] + 9*[E] /0%

~ue(y) 82[E) /0% =0. (5)

Depending on the boundary conditions at the interface,
the problems can be classified into two groups.
(I) Problem with no metallization at the interface:

[E.(, y=h*)] = [E(t, y=h7)]
forall  and i (6a)

[H(t, y=h")] = [H(1, y=h")]
forall t and i. (6b)
(I1) Problem with partially metallized interface:

[E(t, y=h" )] =[E.(t, y=h7)]
forall t and i (7a)

[H (e, y=h" )] = [H(t, y=0")] = [L(1, y = )]
forall t and i (7b)

[E.(¢, y=h)] =0
forall  and ion M. (7¢)

Group (I) contains no metallization at the dielectric inter-
face boundary so that the boundary condition is un-
changed along the transformed direction. Group (II) con-
tains metallic strips at the dielectric interface boundary so
that the nonuniform boundary condition results along the
transformed direction.

A. Uniform Boundary Problem: One-Dimensional Process

Notice that without any metallization at the dielectric
interface boundary, the structure in Fig. 2 becomes a
partially filled rectangular waveguide. Since the boundary
condition is independent of i, (5) can be solved for each i.
Using the separation of variable technique, one can obtain
a typical Sturm-Liouville differential equation for the
y-dependent solution. The solution for the ith line is

3,(A4,,cosw,t+ B, sinw, 1)
-sin Klni(b - y)
‘ETz;(y7 t) = En(Am.cos wnit + Bni Sinwnit)
+(sin Ky,,,d /sin K, ;1) sin K.y
(in region II)

(in region T)

(3)

where K,;, K,,,, and w,; are determined by the character-
istic transcendental equation

Ki,cosK,,dsinK,, h+K,, sinK, dcosK,,h=0 (9)

1ni

[(Klni)z_ d):c;xi/(Ax)Z] /e
= [(K,,) = d2 /(8% /ne, (10)
W2 = [(Kp)' = de,/(8x)Y] /e, (11)

1ni
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From this point on, there are basically two approaches.
If the initial conditions for E, and its time derivative are
given, their diagonalization transforms are readily formed.
From those quantities, one can find 4,, and B,;. Then, the
field at any point at any time can be extracted from the
inverse transform of (8) via [E,(y, #)] = [TLCE][E:( ¥y, ).

An alternative method is an application of the time-step-
ping procedure. From the initial condition for E, and its
transform F_, one can find 4,, at time ¢ =0 in (8), which
will be called 4%, with N = 0. With the causality condition,
the transforms of (1a)-(1c) can be discretized in time as a
time-stepping iteration. Expressing the solution (8) in the
form

EnAfzvt Sin Klnz(b - y)
(in region I)

3, AN (sin K, d/sin K,, h)sin K,, y

n TRl

E, (») =
(in region IT)
(12)

and similar ones for ’H: and ﬁ; at the time (N +1/2), one
can implement a leapfrog-type iteration scheme to calcu-
late these coefficients. The real field at y = y, at the Nth
time step can be obtained by invoking the inverse transfor-
mation as described above to [E] N

B. Nonuniform Boundary Problem:
Two-Dimensional Process

Notice that if the structure contains metallic strips at the
dielectric interface boundary, (5) becomes a set of uncou-
pled partial differential equations related by the nonuni-
form boundary conditions (7b) and (7¢). In this case, the
procedure above is no longer applicable. Instead, a set of
fields defined on the lines should be found that satisfies
the nonuniform boundary condition. Such a set is actually
a mode of the structure. Therefore, the first step of the
analysis is to find these modes of the structure. Any given
input in the transformed domain can be expanded in terms
of these modes. The solution of (5) for the ith line of the
nth mode which satisfies the transformed boundary condi-
tion of (7a) can be written as

(A, cosw,,t+ B, sinw,)sin K, (b~ y)
(in region 1)
E. (1,y) = (A, cosw,t+ B, sinw,t)
-(sin K,,,,d/sin K,,,h)sin K,y
(in region II)

1n:

(13)

K,,,, and w,, are related by

K12m = wrzti“‘el + d;xz/( Ax)2

1np>

where K

K}, = ehper +dg, /(Ax)’. (14)
Substituting (13) into the transforms of (1a) and (1b), we
.can find H,, and H,

znt®

Therefore, the mode current [J,,}
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obtained from the discontinuity of [I’LI:;] at y=his
jz\n:([’ ,V = h)= ( - 1/”‘)fm (t) [(Sin Klnzd/Sin Kth)

' K2m Cos K2nz + Klm Cos K2nzd]
=Y,(t, y=h)E_ (1, y=h) (1s)

where
fm(t) = (Alm Sinwmt/wm - Blnz cos8 wnz[/wnl)
Y (t, y=h)=(=1/p)1,(t)
: (Klnt cot Klmd + K2nt cot K2nt) .

Now, let us apply the final boundary condition (7b) and
(7c) on the real field quantity. Because the boundary
condition is position dependent, it cannot be directly ap-
plied to the transform quantity. Therefore, it is necessary
to obtain the inverse transform of [J,,]:

(1.t y=m)] = [T} [ ¥t y=1)]
AT [E., (2, y=h)] (16)

where
[T’;(t, y= h)] = diag [?,;(I, y= h)] .
Since J_ =0 if the ith line is out of the metallization and

znt

E._ =0 if the ith line is on the metallization, only the

zni

portion of (16) with zero [J,,] and nonzero [E,,] provides
the characieristic matrix equation:

[t y=m)] p=[0] = {[7] [Toe. y=m)] (7]}

1E. (¢, y=h)], (17)

where D implies that the quantity subscribed by D is on
the nonmetallization portion of the interface and red
means the reduced portion of (16) obtained by the method
described above. In order for the nth eigenmode, [E,,], to
satisfy (17) at all times with a nontrivial solution, the
time-dependent expression for each line i should have the
same functional form except for a constant factor and the
determinant of the reduced matrix should be zero. The

final solution of [E;,] is
(A,cosw,t + B,sinw,t)C, sinK,, (b—y)
(in region I)
E, (1,y) = (A,cosw,+ B, sinw,t)
C,,(sin Ky, d/sin K,,.h)sin K,,,y
(in region II)

(18)

where w, is the nth eigenvalue of the characteristic equa-
tion given by

Det {[Te][ Y, (r, y=W][Te] =0 (19)
and C,, can be derived from the corresponding eigenvec-
tor, [E,,], of (17).

The procedure described above is very similar to the
frequency-domain method of lines [1], and the nth eigen-
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Fig. 3. Distnibution of E. field at various times obtained by one-dimen-
sional process. (a) t =0, (b) t = 20, (¢) ¢t = 40, and (d) 7 = 60 [ps].
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value, w,, is actually the nth cutoff frequency of the given
structure. However, the main difference is that we find an
eigenvector to obtain a two-dimensional eigenmode of a
given structure.

Finally, the transform of any real field can be expanded
in terms of the eigenmodes in the transformed domain:

2, (A4, cosw,t+ B, sinw,t)C, sinK,, (b—y)
(in region I)
E_;(r, y)={Z=,(A,co8w,t+ B, sinw,t)
-C,(sinK,, d/sinK, h)sinK,, y
(in region 1I).
(20)

The orthogonality property can be used to find 4, from
the initial condition for [E(¢ =0, y)] = [T [Ez(t = 0, y)].
Also, the causality condition assumed by the time iteration
method [3] can be used to find B,:

B,= A, tan(w,A1/2)

where

At = A)C‘/Q_'\/I‘I‘Elower . (21)

The real field at y = y, at any time can be obtained by
invoking the inverse transformation to the transformed
field [E(t, Y = y,)]- A similar procedure can be used for
the TE excitation problem. Even though this two-dimen-
sional process described above is developed for the analy-
sis of the structure with a nonuniform boundary condition,
it can also be applied to the problem with a uniform
boundary and thus constitutes a generalization of the
one-dimensjonal process described earlier.

III. RESULTS AND DISCUSSION

The accompanying figures are the result of sample calcu-
lations. For comparison, the one-dimensional and two-
dimensional processes are used to calculate the E, field
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Fig. 4. Distribution of E, field at various times obtained by two-dimen-
sional process. (a) £ =0, (b) £ =20, (¢) ¢ = 40, and (d) ¢ = 60 [ps].
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Fig. 5. Cutoff frequency spectrum for the partially filled rectangular

waveguide (A=2, B=1, h=02 [cm], ¢=1.
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6 =3). (2 TM,,.

distribution in the partially filled rectangular waveguide
after a pulsed E, excitation is imposed at =0 at the
center of the cross section. Figs. 3 and 4 show, respec-
tively, the results obtained by the two different processes.
Even though the ripples in the two-dimensional process
seem to be slightly higher than those of the one-dimen-
sional process, our results show that both processes can be
used to analyze the wave propagation characteristics in the
time domain. One thing to be noticed here is that although
the one-dimensional process is simple and efficient, it
cannot be applied to problems with nonuniform boundary
conditions. Fig. 5 shows the spectrum of the time signal
for E, obtained by the one-dimensional process, where the
waveguide cutoff frequencies correspond to the peaks in
the spectrum. The results differ by less than 1 percent from
the analytical values. For confirmation of the two-dimen-
sional process, the eigenfrequency of the finned rectangu-
lar waveguide for the dominant TE mode is calculated by
the characteristic equation (19) and compared with
Hoefer’s result [4] in Fig. 6. Good agreement is obtained.
The result for pulse propagation and scattering in the
finned rectangular waveguide obtained by the two-dimen-
sional process is shown in Fig. 7.
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Fig. 7. The picture of a pulse propagation in a.finned rectangular
waveguide (4=1, B=2, h=0.5 [cm], and ¢, =3) at time (a) r=0,
(b) £=130, (c) 1 =40, and (d) = 60 [ps]. '

IV. CONCLUSIONS

In this paper, we showed that the time-domain method
of lines can be used to analyze planar transmission struc-
tures. It is accomplished by the one-dimensional or the
two-dimensional eigenmode expansion concept depending
on the uniformity of the interface boundary condition
along the transformed direction. The proposed time-
domain method can be applied to analyze three-dimen-
sional wave propagation problems in the time domain.
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