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Time-Domain Method of Lines Applied to
Planar Guided Wave Structures

S. NAM, HAO LING, MEMBER, IEEE, AND TATSUO ITOH, FELLOW, IEEE

Ab.vtract —A new time-domain method for the analysis of wave propaga-

tion and scattering in a planar transmission structure is developed in which

the concept of the method of lines is used. The analytical process incorpo-

rated along one of the three dimensions has been executed for each line

independently (one-dimensionaf process) or for one set of lines (two-

dimensional process) dependhg on whether or not the structure contains

metallic strips at the dielectric interface boundary. A simple numerical

example is presented as a demonstration of the above two processes of the

method, and its validhy is shown by comparison with other data.

I. INTRODUCTION

T HE TIME-DOMAIN analysis of microwave planar

transmission structures provides an alternative to the

frequency-domain approach and is also useful for studying

the behavior of pulsed signals in structures such as high-

speed digital circuits. A typical time-domain analysis re-

quires discretization of a three-dimensional space into a

three-dimensional mesh. Usually, a large computer storage

and a long computation time are required. An additional

problem of these methods is the difficulty in handling

open boundaries.

The method proposed in this paper originates from’ the

fact that most of the discontinuities appearing in the

planar transmission structures are located on the substrate

surface and the space below and above this surface is

uniform and homogeneous. We wish to solve the problem

by discretizing only in a two-dimensional surface on’ the

substrate where the discontinuity is located. This is possi-

ble if the wave-scattering information in the direction

perpendicular to the substrate surface is available analyti-

cally. The proposed method actually incorporates this pro-

cess. The method is somewhat similar to a frequency-

domain analysis called the method of lines [1].

The method entails the discretization of the structure by

a number of lines perpendicular to the substrate surface as

shown in Fig. 1. At the specified time, a spatial diagonal-

ization transform of the field distribution at each intersec-

tion of these lines with the substrate surface is calculated

by Maxwell’s equations discretized only in the x and z

directions, which are parallel to the substrate surface. The

field information in they direction is obtained analytically

at each point and time. This information can be found
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Fig: 1. Typical planar transmission line structure with discontinuity

and its discretization example for the analysis.

from the inverse Fourier transform of the solution of’ the

frequency-domain Helmholtz equation in the y direction.

One may wonder what is happening to the wave-scatter-

ing phenomena that are occurring everywhere in the wave-

guide, not only on each line. This question is natural,

because in other time-domain methods the electromagnetic

fields at one mesh point interact with those at all six

neighboring mesh points in the x, y, and z directions. In

the proposed method, the fields at any point on one

discretization line do not appear to interact with those on

a similar point on another line. It should be emphasized

that this is not the case. As we will see shortly, the spatial

diagonalization transformation introduced in this method

has the property that the real field as a function of

(discretized) x and z is transformed to another discretized

quantity (transformed field) which contains the real field

quantities at all x and z values. Therefore, the analytical

information in the y direction in the transformed domain

already contains the interaction between lines. Since ana-

lytical expressions are used for the field variation in the y

direction, this method can easily handle the case where the

top wall is removed, whereby the structure is open in the y

direction.

II. METHOD

Let us consider a simple two-dimensional structure as a

test case. The formulation for such a structure is simple,

yet it contains all essential features of the proposed method.

As shown in Fig. 2, the problem is a partially filled

rectangular waveguide with/without metallization at the

dielectric, interface excited by an electric field, ~,, infinite

in length and uniform in the z (axial) direction. The
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2. The cross-sectional structure of a finned rectangular waveguide.

problem is now a two-dimensional one. This problem

corresponds to finding the time-domain behavior of the

pulsed input in the given structure and the cutoff frequen-

cies of various TM modes in the frequency domain [2].

Because of the excitation, only E=, HX, and HY exist and

6’/8z = O. The time-domain equations, discretized in the x

direction only, are given by

(la)–p~[Hx]/dt=~[q]/aY

–pd[HY]/8t= [D;][EZ]/AX (lb)

c(y) d[Ez]/dt =–[D;]’[I(y]/Ax– ~[R]/~Y (lC)

[D;x][~z]/(AX)2 +d2[Ez]/d2y

–pC(y)d2[~z]/d2t=0 (Id)

where [D: ], [ D:X ] are difference operators in which the
sidewall boundary condition is incorporated [1] and given

by

I
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The variables [~,], [H,], and [HY] are the column vectors

where the zth element represents the fields along i th line

and are functions of y and t.

Since [ D~X] is a real symmetric matrix, there exists a real

orthogonal matrix [TX’] that transforms [D.&] into a diago-

nal matrix [ d;z] and is given by [1]

[T;] ,, =J_sin[ilc./(N+ l)]

fori, lc=lto N (3)

[d~X]i+l,i =2sin[i~/(2N+2)]

fori=lto N (4)

where N is the tQtal number of discretized lines for Ez.

We can now transform [E=], etc., into a transform

[~] = [T’] ‘[liZ], etc., where the superscript t stands for

transpose. The transform of (id) is

(1/Ax) 2[d;X] [~]+ ~2[~]/82y

–@)d’[~]/d%=o. (5)

Depending on the boundary conditions at the interface,

the problems can be classified into two groups.

(I) Problem with no metallization at the interface:

[E=(Z, y=h+)] = [E=(t, y=h-)]

for all t and i

[HX(t, ~=h+)] = [HX(t, ~=h-)]

for all t and i.

(II) Problem with partially metallized interface:

[Ez(t, ~=h+)] = [E=(t, ~=h-)]

for all t and i

(6a)

(6b)

(7a)

[Hx(t,y=h-)]-[HX(t, ~=h+)] = [Jz(~, ~=h)]

for all t and i (7b)

[Ez(t, y=lz)] =0

for all t and z on M. (7c)

Group (I) contains no metallization at the dielectric inter-

face boundary so that the boundary condition is un-

changed along the transformed direction. Group (11) con-

tains metallic strips at the dielectric interface boundary so

that the nonuniform boundary condition results along the

transformed direction.

A. Uniform Boundary Problem: One-Dimensional Process

Notice that without any metallization at the dielectric

interface boundary, the structure in Fig. 2 becomes a

partially filled rectangular waveguide. Since the boundary

condition is independent of i, (5) can be solved for each i.

Using the separation of variable technique, one can obtain

a typical Sturm–Liouville differential equation for the

y-dependent solution. The solution for the i th line is

[

X~(A~Z cos tin,t + Bni sin~ni~)

.sin Kl~j(b– y) (in region I)

~(y, t)= En(Anicostinit + llnzsino~zt) (8)

o(sin K1.id/sin K2*,h) sin K’,ziy

(in region II)

where KIEi, K2~i, and co~iare determined by the character-

istic transcendental equation

K,ni cos K, Mid sin K2~ih + K2ni sin KIHzdcos K2nih = O (9)

[(K~ni)2-d~xi/(Ax)2]/p~~

= [( K2.j)2- d~.i/(Ax)2]\p~2 (10)

O:i = [( K1ni)2– d;Xi/(Ax)2]/p~l. (11)
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From this point on, there are basically two approaches.

If the initial conditions for E, and its time derivative are

given, their diagonalization transforms are readily formed.

From those quantities, one can find A., and B.,. Then, the

field at any point at any time can be extracted from the

inverse transform of (8) via [ J5,( y, t)] = [T:][~( y, t)].

An alternative method is an application of the time-step-

ping procedure. From the initial condition for E, and its

transform ~, one can find A~l at time t = O in (8), which

will be called A j with N = O. With the causality condition,

the transforms of (la) –(lc) can be discretized in time as a

time-stepping iteration. Expressing the solution (8) in the

form

{

(in region I)
~“(y) =

ZnA~ (sin K1.,d/sin K2H,h) sin Kzn, y

\ (in region II)

(12)

and similar ones for ~ and ~ at the time (N+ 1/2), one

can implement a leapfrog-type iteration scheme to calcu-

late these coefficients. The real field at y = yO at the Nth

time step can be obtained by invoking the inverse transfor-

mation as described above to [~] ~.

B. Nonuniform Boundaq Problem:

Two-Dimensional Process

Notice that if the structure contains metallic strips at the

dielectric interface boundary, (5) becomes a set of uncou-

pled partial differential equations related by the nonuni-

form boundary conditions (7b) and (7c). In this case, the

procedure above is no longer applicable. Instead, a set of

fields defined on the lines should be found that satisfies

the nonuniform boundary condition. Such a set is actually

a mode of the structure. Therefore, the first step of the

analysis is to find these modes of the structure. Any given

input in the transformed domain can be expanded in terms

of these modes. The solution of (5) for the i th line of the

n th mode which satisfies the transformed boundary condi-

tion of (7a) can be written as

1
(Anzcosu.lt + B.l sin~.lt) sin Kln,(b - Y)

(in region I)

~(~, y) = (A~,cosQ~,t + B., sino~,t)

o(sin K1n,d/sin K,.lh) sin K,.,Y

(in region 11)

obtained from the discontinuity of [~] at y = h is

~(t, y = h)= (–l/p)f.l (t)[(sin Kl.ld/sin K2m,h)

. K2~z COS &, + ~ln, COS K2nzd]

=~(t, y=h)~(t, y=h) (15)

where

f~, (1) = (Al~, sinO~,t/cO.Z – B1., cos UHlt/CJ,lj)

~(t, y=h) =(–l/p)~~l(t)

~(Kln, cot K1.zd + K,., cot Kz.,) .

Now, let us apply the final boundary condition (7b) and

(7c) on the real field quantity. Because the boundary

condition is position dependent, it cannot be directly ap-

plied to the transform quantity. Th~efore, it is necessary

to obtain the inverse transform of [Jz. ]:

[J,n(t,y=h)] = [T;][~(t, y=h)]

[r:l’[%(~> Y=h)] (16)

where

[~(t, y=h)] =diag[~(t, y=h)].

Since J,.l = O if the i th line is out of the metallization and

Ez~z= O if the ith line is on the metallization, only the

portion of (16) with zero [J=.] and nonzero [Ezm] provides

the characteristic matrix equation:

.[E2n(t, y=h)]~ (17)

where D implies that the quantity subscribed by D is on

the nonmetallization portion of the interface and red

means the reduced portion of (16) obtained by the method

described above. In order for the n th eigenmode, [ Ez~], to

satisfy (17) at all times with a nontrivial solution, the

time-dependent expression for each line i should have the

same functional form except for a constant factor and the

determinant of the reduced matrix should be zero. The

final solution of [ZJ is

(Ancosunt + BnsinoJ)C., sin K1.l(b - Y)

(in region I)

(Ancosu,,t + B. sin~nt)

. C., (sin KlnZd/sin Kz.ih ) sin Kz.z y

(in region II)

(18)

(13)
where c+ is the n th eigenvalue of the characteristic equa-

where Kin,, Kznl, and o~l are related by tion given by

K:n, = O#ipcl + d;x./(Ax)2 Det([Tj][Y.(t, y=h)][Tf]’},e, =O (19)

K;.l = U;,KC2 + d~X,/(Ax)2. (14) and c., can be derived from the corresponding eigenvec-

tor, [~ZH], of (17).
Substituting (13) into the transforms of (la) and (lb), ~e The procedure described above is very similar to the

~can find ~ and ~. Therefore, the mode current [.JZJ frequency-domain method of lines [1], and the n th eigen-
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(a) (b)

(c) (d)

Fig, 3. Distribution of E, field at various times obtained by one-dimen-

sional process. (a) t = O, (b) t = 20, (c) t = 40, and (d) t = 60 [ps].

value, on, is actually the n th cutoff frequency of the given

structure. However, the main difference is that we find an

eigenvector to obtain a two-dimensional eigenmode of a

given structure.

Finally, the transform of any real field can be expanded

in terms of the eigenmodes in the transformed domain:

[

~~(zlncosu~t + Bmsinunf)C~, sin Kin, (b – y)

(in region I)

Z(t, Y) = ~.(AHcOsti.t + l?.sinu~t)

. C~i (sin Kl~Id/sin K2H1r?) sin K2.Zy

(in region II).

(20)

The orthogonality property can be used to find A. from

the initial condition for [~(t = O, y)]= [T.X’]‘[Ez(t = O, y)].

Also, the causality condition assumed by

method [3] can be used to find B.:

B.= A~tan(ti~ At/2)

where

At= Ax~?{=.

the time iteration

(21)

The real field at y = yO at any time can be obtained by

invoking the inverse transformation to the transformed

field [~(t, y = yO)]. A similar procedure can be used for

the TE excitation problem. Even though this two-dimen-

sional process described above is developed for the analy-

sis of the structure with a nonuniform boundary condition,

it can also be applied to the problem with a uniform

boundary and thus constitutes a generalization of the

one-dimensional process described earlier.

III. RESULTS AND DISCUSSION

The accompanying figures are the result of sample calcu-

lations. For comparison, the one-dimensional and two-

dimensional processes are used to calculate the E= field

(a) (b)

(c) (d)

Fig. 4. Distribution of E= field at various times obtarned by two-dimen-

sional process. (a) t = O, (b) t = 20, (c) t = 40, and (d) t = 60 [ps].
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Fig. 5. Cutoff frequency spectrum for the partiatly filled rectangular
waveguide (,4 = 2, B =1, h = 0.2 [cm], Cl =1. 62 = 3). (a) TM1l,

(b) TM31, (c) TM12 and (d) TM32 etc.

distribution in the partially filled rectangular waveguide

after a pulsed E= excitation is imposed at t = O at the

center of the cross section. Figs. 3 and 4 show, respec-

tively, the results obtained by the two different processes.

Even though the ripples in the two-dimensional process

seem to be slightly higher than those of the one-dimen-

sional process, our results show that both processes can be

used to analyze the wave propagation characteristics in the

time domain. One thing to be noticed here is that although

the one-dimensional process is simple and efficient, it

cannot be applied to problems with nonuniform boundary

conditions. Fig. 5 shows the spectrum of the time signal

for E, obtained by the one-dimensional process, where the

waveguide cutoff frequencies correspond to the peaks in

the spectrum. The results differ by less than 1 percent from

the analytical values. For confirmation of the two-dimen-

sional process, the eigenfrequency of the finned rectangu-

lar waveguide for the dominant TE mode is calculated by

the characteristic equation (19) and compared with

Hoefer’s result [4] in Fig. 6. Good agreement is obtained.

The result for pulse propagation and scattering in the

finned rectangular waveguide obtained by the two-dimen-

sional process is shown in Fig. 7.
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Fig. 6. Cutoff frequency of the finned waveguide shown in Fig. 1 with
B/,4 = 2, h =1. (Light squares: present method. Dark squares: Hoefer

[4].)

(c) (d)

Fig. 7. The picture of a pulse propagation in a finned rectangular
waveguide (A =1, B = 2, h = 0.5 [cm], and C, = 3) at time (a) r = O,
(b) r = 30, (c) f = 40, and (d) t =60 [ps].

IV. CONCLUSIONS

In this paper, we showed that the time-domain method

of lines can be used to analyze planar transmission struc-

tures. It is accomplished by the one-dimensional or the

two-dimensional eigenmode expansion concept depending

on the uniformity of the interface boundary condition

along the transformed direction. The proposed time-

domain method can be applied to analyze three-dimen-

sional wave propagation problems in the time domain.
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